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Abstract

In this paper, we examine the dynamics of a simple model for a braking process. The 4 dof model is
designed to capture some of the dynamics of a set of brake pads halting a rotor. We find from our model
that the motion of the system transverse to the direction of braking experiences a sharp change in excitation
when the slip velocity in the braking direction is low. This change results in a complicated vibration which
occurs at low slip speeds. In addition, there is often no correlation between the frequencies of the resulting
vibration and the natural frequencies of system in the absence of friction. Based on the results from our
numerical investigations we are able to propose a new mechanism for disc brake squeal. This mechanism is
similar to previously proposed mechanisms in that we view squeal as a friction-induced phenomenon.
However, in contrast to the majority of these mechanisms, we are able to encompass the transient,
dissipative nature of a braking process.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Squealing disc brakes have long received a large amount of attention from researchers. This
attention is due, of course, to the economics of the related customer complaints, warranty claims,
and repairs to disc brake systems, but also to the difficult nature of the problem (see Refs. [1–4]).
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Though the literature contains several different theories and a fair amount of controversy, there
is little doubt that at its crux, disc brake squeal involves a complex, low amplitude vibration of the
braking system resulting from a frictional force. Friction oscillators have occupied scores of
researchers who have provided many insightful results (see, for example, Ref. [5]), but it seems
that this wealth has not yielded a corresponding amount of traction on the elusive problem of disc
brake squeal. Based on studies of these oscillators, many mechanisms for disc brake squeal have
been proposed.1 These include a decreasing mk with increasing sliding velocity in Ref. [6], sprag-
slip (or kinematic constraint instability) in Refs. [7,8], follower force models in Refs. [9,10], the
splitting of doublet modes in Ref. [11], and hammering in Ref. [12]. These mechanisms, while
accurate or enlightening in many aspects, do not capture all possible aspects and regimes of disc
brake squeal. Of course, some features must be omitted when constructing simple models to
explain phenomena as complex as disc brake squeal, but it seems that there have been few
attempts to include a more general sliding framework or transient phenomena.

We would like to emphasize that most analyses of disc brake squeal feature a model for the
braking system where two contacting bodies have a constant slip velocity field. This is also true in
studies of brake creep groan (see Ref. [13]), a brake noise regime in which the magnitude of the
slip velocity field approaches zero. The steady state natures of the friction force and slip velocity
fields lends these models to an eigenvalue analysis where instability of the steady braking state is
equated to brake squeal.2 The assumption of a steady-state braking event is very limited and
excludes the case where the braking event reduces the slip velocity field between the bodies to zero.
In this paper, we wish to look at this case. The braking event in which we are interested features
stick–slip transitions. These are not amenable to analytics and, consequently, we resort to
numerical simulations. These simulations produce some surprising results which are substantially
different from those obtained using earlier steady state brake noise models.

As a result of our numerical work with a simple model of a braking system, we propose a new
mechanism for disc brake squeal. The mechanism is as follows: During a braking event, we may
consider two braking directions, longitudinal and transverse. In an automotive disc brake, the
longitudinal direction is the circumferential direction of the brake rotor while the transverse
direction is the radial direction of the brake rotor. As the braking event proceeds, the slip velocity
(vsl) in the longitudinal direction eventually approaches the same order of magnitude as the slip
velocity (vst) in the transverse direction. As vsl passes through zero, the direction of the friction
force experiences a sharp change. This change is experienced by modes in the transverse direction
as a rapidly varying force which induces vibrations in this direction. It is probable, owing to
asymmetries in the rotor geometry and contact conditions and the Poisson effect, that the
vibration in the radial direction will lead to out-of-plane vibrations of the rotor. If any of these
vibrations are in the audible range, they will contribute to disc brake squeal. The frequencies of
vibration do not necessarily correspond to natural frequencies of the stationary, frictionless brake
system.
1There are numerous such models involving frictional oscillators. In the interests of brevity, we refer the reader to

Section 8 of Ref. [1] for a discussion of them.
2In the absence of viscous dissipation, the onset of instability is often called binary flutter or a reversible Hopf

bifurcation. An analysis of this type is often referred to as a ‘‘complex modal analysis.’’
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An outline of this paper is as follows: In the next section, we present a simple 4 dof model of a
brake system. The numerical method we use to examine the stick–slip vibrations of this system is
discussed in Section 3. This is followed in Section 4 by our numerical results which lead us to
propose our mechanism for disc brake squeal in Section 5. We conclude the paper with a
discussion of future research directions and some closing remarks.
2. A four-degree-of-freedom friction oscillator

One of the main purposes of this paper is to analyze the dynamics of a friction oscillator when
one of its constituents halts the other. This mimics the behavior of disc brakes where the pads
bring the rotor to a stop. Indeed, it can be argued that the model we discuss below is a finite modal
truncation of an actual disc brake system.3 The small number of dof in the model permits us to
perform a tractable numerical analysis and infer some interesting conclusions.

Consider the two-mass system shown in Fig. 1. One mass, m2; is elastically restrained in the y
direction by linear springs with constant k2y and is given an initial velocity u0 in the x direction.
This mass is to be braked by frictional interaction with a second mass, m1; which is elastically
restrained by two sets of linear springs k1x and k1y: The two masses are pressed together such that
the resultant normal force N exists with the desired (positive) value at all times. The x coordinate
of m1 and both y coordinates are measured from the equilibrium position of the system, while the
x coordinate of m2 measures the net distance traveled by m2 in the x direction.

An important feature of the model is that the motion of m2 is not prescribed in any way except
that it shall evolve from the imposed initial conditions in accordance with the applicable physical
laws, including a constitutive relation for frictional interaction which will be discussed below. We
emphasize that although the purpose of the model is to investigate a simple case of decelerative
frictional behavior, there is no prescribed deceleration (as, e.g., in Refs. [14–16]).

In the present study, the frictional interaction between the two bodies is governed by the
Amontons–Coulomb law. This dictates that if vrel is the relative velocity between the two masses
and jvrelj40; the friction force Ff is given by

Ff ¼ �mkN
vrel

jvrelj
, (1)

where mk is the coefficient of kinetic friction, N is the magnitude of the normal force, and j � j

denotes the length of a vector. During sticking (i.e., when jvrelj ¼ 0), the friction force becomes a
Lagrange multiplier vector enforcing the constraints

vrel ¼ 0. (2)

If imposing these constraints causes the condition

jFf jpmsN, (3)
3The model described below accommodates two modes in the y direction (corresponding to the radial direction) and

one mode in the x (circumferential) direction. By varying the relative natural frequencies of these modes, one may

investigate the possible interactions of in-plane modes with widely varying frequencies.
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Fig. 1. Schematic of the 4 dof model for a friction oscillator. The body of mass m2 is given an initial velocity in the ex

direction and is braked via frictional interaction with the body of mass m1: The latter is elastically restrained by the

springs k1x and k1y: We note that the effective spring constant of all the springs labeled k2 is k2y:
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where ms is the coefficient of static friction, to be violated, constraints (2) are relaxed, and the
friction force is governed by the slip law (1).

With the friction force prescribed as above, it is straightforward to obtain the equations of
motion for the system:

m1 €x1 ¼ �k1xx1 � c1x _x1 þ Ffx,

m1 €y1 ¼ �k1yy1 � c1y _y1 þ Ffy,

m2 €x2 ¼ Ffx,

m2 €y2 ¼ �k2yy2 � c2y _y2 � Ffy, ð4Þ

where Ffx and Ffy represent the x and y components of the friction force, respectively, and the
superposed dot signifies differentiation with respect to time. In the interest of increased generality,
linear viscous damping (with coefficients c1x; c1y; and c2y) has been also included where
appropriate. Using the definitions

t ¼ to1; o1 ¼

ffiffiffiffiffiffiffi
k1x

m1

s
; o2 ¼

ffiffiffiffiffiffiffi
k1y

m1

s
; o3 ¼

ffiffiffiffiffiffiffi
k2y

m2

s
,

d1x ¼
c1x

m1o1
; d1y ¼

c1y

m1o1
; d2y ¼

c2y

m2o1
,

O1 ¼
o2

o1
; O2 ¼

o3

o1
; x ¼

xo1

u0
, ð5Þ

one is immediately led to the non-dimensional equations of motion

x001 ¼ �x1 � d1xx
0
1 þ Ffx,

y001 ¼ �O1y1 � d1yy
0
1 þ Ffy,

x002 ¼ �Ffx,

y002 ¼ �O2y2 � d2yy
0
2 � Ffy, ð6Þ
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where ð�Þ0 signifies differentiation with respect to the non-dimensional time t: Note that in Eq. (6),
the F’s denote the dimensionless friction forces, which are found by replacing N with N ¼

N=ðm1u0o1Þ in Eqs. (1) and (3).
3. Numerical integration scheme

The prescription of Amontons–Coulomb friction introduces a number of analytical and
computational difficulties. Primary among them is that this prescription encompasses two
phenomenologically different states, sticking and slipping, for bodies in contact. In each of these
states, the friction force must be calculated in a different manner, i.e., directly from Eq. (1) during
slipping or as a Lagrange multiplier enforcing the constraint equation (2) during sticking.
Additional difficulty is encountered due to inequality (3) that must be used to determine the
appropriate state. Thus Amontons–Coulomb friction with stick–slip does not lend itself easily to
either closed form analysis or numerical integration.

For the problem at hand, it is convenient to define the state vector

Y ¼ x1 x01 y1 y01 x2 x02 y2 y02
� �T

, (7)

and recast Eqs. (6) in state-space form as

Y0 ¼ GðY; tÞ, (8)

where dependence on dimensionless time t is included for generality. The solution of Eqs. (8) must
satisfy a pair of algebraic constraints

gðY; tÞ ¼ 0, (9)

where the vector function g is given by

gðYÞ ¼

v1 � v2 for sticking states,

Ff þ mkN
v1 � v2

jv1 � v2j
for slipping states.

8<
: (10)

In the above,

vi ¼ x0iex þ y0iey; i ¼ 1; 2,

Ff ¼ Ffxex þ Ffyey. ð11Þ

The system, consisting of Eqs. (8) and (9), may be regarded as a set of differential algebraic
equations (DAEs). Such systems are classified by their index m, which is defined as the smallest
number of differentiations that are needed in order to transform the system into a purely
differential form. If the index of the system of DAEs is less than or equal to 2, the system can
usually be solved by the means of methods developed for the solution of systems of ordinary
differential equations. It may be seen that the system in question here, Eqs. (8) and (9), has index
m ¼ 1:

Alternatively, the sticking constraint equation (10)1 may be treated as a purely differential
constraint and the slipping constraint equation (10)2 as a prescription for the friction force during
sliding. Such a formulation allows one to bypass discussion of DAEs, but it presents some
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additional drawbacks. First, the solution space is reduced in dimension during sticking. This
entails the removal of the friction force from the equations of motion (6) during sticking states, so
an additional calculation is needed in order to evaluate the stick condition equation (3). Second,
the set of equations being integrated alternates every time a stick–slip or slip–stick transition takes
place. In the DAE formulation, the same equations of motion are integrated at every time step,
and the friction forces are automatically recovered as a Lagrange multiplier enforcing constraints
(9).

As discussed in Ref. [17], DAEs are common in multi-body dynamics and many other fields in
engineering and science. Many solution methods have been developed for DAEs in these settings
(see Refs. [18,19]) and for DAEs in rigid body contact dynamics in particular. Here, however, the
assumption of persistent contact between the two bodies makes the system closely analogous to
elasto-plasticity (see Ref. [20]) (even though elasto-plasticity involves DAEs of index m ¼ 2). It is
therefore convenient to adapt a solution algorithm from elasto-plasticity based on the familiar
implicit two-step backward differentiation formula (BDF2) for ODEs.4

Here we briefly summarize the adapted method. The equations of motion (6) for the system
may be recast in state-space form (see Eq. (8)) where dependence on non-dimensional time t is
included for generality, and a vector-valued constraint equation (9) that must also be satisfied.
Note that the appearance here of two pairs of alternately enforced constraint equations (10),
represents a small change from the method described in Ref. [21]. Time discretization using the
two-step BDF method then results in the algebraic form

Ynþ1 ¼ a1nYn�1 þ a2nYn þ bnDtnGnþ1,

gðYnþ1Þ ¼ 0, ð12Þ

where the coefficients a1n; a2n; and bn are

a1n ¼ �
Dt2n

Dtn�1ðDtn�1 þ 2DtnÞ
,

a2n ¼
ðDtn�1 þ DtnÞ

2

Dtn�1ðDtn�1 þ 2DtnÞ
,

bn ¼
Dtn�1 þ Dtn

Dtn�1 þ 2Dtn

, ð13Þ

and Dtn ¼ tnþ1 � tn:
Stick is assumed at the outset of every time step (i.e., Eq. (10)1 is assumed to hold at time tnþ1).

If the previous step described the system as being in stick condition, the states are found at time
tnþ1 using Eq. (12)1;2: Otherwise, the two-step method may not be applied, and these values are
calculated using the one-step BDF method

Ynþ1 ¼ Yn þ DtnGnþ1, (14)

(which is the standard backward Euler method) coupled with Eq. (12)2: If the calculated
magnitude of the multipliers needed to enforce the constraint equation (10)1 is greater than the
amount of static friction that can be supported, the step is discarded and recalculated using the
4Further details on this formula can be found in Ref. [21].
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slip constraint equation (10)2: Here, the recalculation is done using BDF2 (resp. BDF1) when the
previous step described a slip (resp. stick) state.

One point from Ref. [21] concerning BDF methods for DAEs that deserves emphasis here is
that form (12) has the favorable attribute that the constraints are enforced at the end of every time
step. This assures exact satisfaction of the constraints at the same instant at which the momentum
equations (12)1 are also satisfied.
4. Results

Before discussing the results of the system investigation, some discussion of initial conditions
and parameter selection is warranted. In each of the following examples, the aim is to mimic a
braking event. Hence, the large mass (m2), which is meant to represent the rotor, is given a large
initial velocity while the small mass (m1), which is meant to represent the pads, is initially at rest.
Specifically, the large block (m2) is given an initial x velocity u0 ¼ 10: Additionally, so that effects
in the transverse direction might be observed, this block is given a (relatively) much smaller
velocity in the y direction: y02ðt ¼ 0Þ ¼ 0:01:

Parameters are selected in order to investigate the range of possible general behaviors of the
system. This means comparing permutations of the ordering 1oO1oO2; where the non-
dimensional frequencies are typically chosen so as to avoid periodic behavior during sliding
phases. The effect of different levels of damping is also investigated. One should note, however,
that as ms;k and N always appear in concert in this model, it is not possible to separate the effects
of varying these parameters. As such, the product of these two parameters is chosen along with
the ratio of the two masses after some simple experimentation so as to allow the system to evolve
over a conveniently sized time interval.5 Each simulation is run with different values of the time
step to assure that the results are not an artifact of the numerics.
4.1. Case 1: O1 ¼ O2 ¼ 1

In this example, all of the natural frequencies are equal and damping is absent
(di ¼ 0; i ¼ 1; 2; 3). Fig. 2(a) shows the evolution of the longitudinal velocities of the two blocks,
which demonstrates the ‘‘braking’’ action of the system. The motion of m2 excites an oscillation of
m1 at its natural frequency which immediately saturates (see Fig. 2(b)). The frictional interaction
of the two components causes m2 to decelerate in a manner that is almost linear. Once the x

velocity of m2 is less than the saturation velocity of m1; the system undergoes a series of
alternating slip-to-stick and stick-to-slip transitions as the oscillations of m1 decrease in
magnitude within the linear envelope prescribed by the velocity of m2: Once enough energy is
dissipated, the two masses come to a final, persistent sticking state where they oscillate together.

The y velocities show the expected behavior. The small perturbation to the y velocity of m2

results in both blocks oscillating closely together in the y direction throughout the evolution of the
5For the simulations, we choose the dimensionless products of the friction coefficients and the normal force to be 15.

Consequently, in all of our simulations mk ¼ ms:
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system. Fig. 3 shows the first part of the velocity response in the y direction. The stick–slip
behavior is barely noticeable in the transverse direction (see Figs. 2(b) and 3).
4.2. Case 2: O2o1oO1

In this case, the frequency ratios are O1 ¼ 10
ffiffiffiffiffiffiffiffi
p=2

p
and O2 ¼

1
100

ffiffiffiffiffiffiffiffi
5=2

p
; and damping is again

absent. As shown in Fig. 4(a), the braking action of the system in this case is virtually identical to
that in Case 1 (see Fig. 2(a)).

However, an interesting behavior manifests itself in the transverse direction. Notice now that
with a mismatch in the system’s natural frequencies, the small perturbation in the y direction
results in a somewhat peculiar looking oscillation of m1 as shown in Fig. 4(c). The response is
characterized by a periodic series of strong spikes within an envelope interspersed with much



ARTICLE IN PRESS

100 200 3000

100 200 3000 100 200 3000

0

0

0

0

10

10

-10

20

0.01

-40

-80

  -120

8(10-4)

-8(10-4)

x′ 1
,

x′ 2

�

��

y′ 1
,

y′ 2

y 1

Po
w

er
 S

pe
ct

ra
l D

en
si

ty
 (

dB
)

�

(a) (b)

(d)(c)

Fig. 4. Case 2: O1 ¼ 10
ffiffiffiffiffiffiffiffi
p=2

p
	 12:53 and O2 ¼

1
100

ffiffiffiffiffiffiffiffi
5=2

p
	 0:016: Time histories of the (a) x and (b) y velocities of

both masses, and (c) y position of m1: The approximate power spectral density of the y response of m1 (as appears in (c))

is shown in (d). Solid lines indicate m1 and dashed lines m2:

70 80 90 100
-8(10-4)

8(10-4)

0

�

y 1

Fig. 5. Case 2: O1 ¼ 10
ffiffiffiffiffiffiffiffi
p=2

p
	 12:53 and O2 ¼

1
100

ffiffiffiffiffiffiffiffi
5=2

p
	 0:016: Time series of the y position of block m1:

N.M. Kinkaid et al. / Journal of Sound and Vibration 287 (2005) 901–917 909
smaller decaying oscillations at a higher frequency. Fig. 5 shows a few of these oscillations in
greater detail.

Perhaps more insight into the behavior can be gained from attention to the frequency response.
Fig. 4(d) shows the power spectral density of the y response of m1 as obtained by the maximum
entropy method (see Refs. [22,23]). The frequency response of m1 in the transverse direction is
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dominated by a decaying train of regularly spaced spikes. According to Ref. [24], the frequency
response of periodically spaced impulse functions, say

f ðtÞ ¼ dðnTÞ; n ¼ 1; 2; 3; . . . , (15)

is a series of impulse functions separated by 1=T :

FðoÞ ¼ d n
1

T

	 

; n ¼ 1; 2; 3; . . . , (16)

where dð�Þ is the Dirac delta function. Note that the spacing of the spikes in Fig. 4(d) is equal to 1,
which is the natural frequency of m1 in the x direction. It is also interesting to note that the decay
of the spikes becomes stronger past the natural frequency of m1 in the y direction (which is
approximately equal to 12.5), and that there is no peak at that frequency.

4.3. Case 3: 1oO1oO2

Now observing the case where O1 ¼ 2
ffiffiffi
5

p
and O2 ¼ 5

ffiffiffi
2

p
; again with no viscous damping, we

find that once again the velocities in the x direction (see Fig. 6(a)) respond indistinguishably from
what is shown in Fig. 2(a). This means that the braking action is unaffected. Once again, though,
the y response of m1 (see Fig. 6(b)) shows a complicated, multi-scale vibratory response. The
mismatch of natural frequencies here results in another impulse-train-like transverse response
for m1:

Fig. 7 shows this frequency response. Again, peaks separated by Do ¼ 1 are observed. These
peaks increase in magnitude in the range O1oooO2 and decrease when the frequency becomes
higher than O2: Once again the response of m1 in the y direction shows no peak at the natural
frequency for the uncoupled system in that direction. It should be noted that the peaks do not
actually occur at multiples of 1, but rather are shifted to the right. In fact, the shifting is equal to
O2 	 7:07; so the apparent shift is only approximately 0:07:

Here, then, it is illuminating to apply the Frequency Shifting Theorem, which states [24] that if
the Fourier transform of f ðtÞ is FðoÞ; then the Fourier transform of ejo0tf ðtÞ is Fðo� o0Þ; and
vice versa. Thus, one can interpret that in this case, the transverse impulse train to which m1 is
0
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line for m2) and (b) y position of m1:
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subjected is modulated by a trigonometric function with frequency o0 ¼ 7:07 	 O2: Indeed, it
may be inferred that this effect appears in Case 2 above as well, but there O2 is so small (	 0:016)
that the effect is negligible.

In order to emphasize this point, we present here some results from another case with
1oO1oO2; specifically O1 ¼ 10

ffiffiffiffiffiffiffiffi
p=2

p
and O2 ¼ 10

ffiffiffiffiffiffiffiffi
5=2

p
: As seen in Fig. 8(b), the spectrum is

shifted by roughly O2 	 15:81: The y response of m1 for this case is shown in Fig. 8(a).
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4.4. Case 4: 1oO2oO1

Here again we examine the behavior of the system with no viscous damping. In this case, the
frequency ratios O1 and O2 are 10

ffiffiffiffiffiffiffiffi
p=2

p
and 5

ffiffiffi
2

p
; respectively. As expected, the braking action

remains entirely similar to that shown in Fig. 6(a). Fig. 9(a) shows the transverse response for m1:
Again, there is insight to be gained by transforming this data to the frequency domain (see Fig.
9(b)) where the familiar impulse train structure is seen. The peaks tend to increase until o 	 O2;
then decrease, the rate of attenuation increasing after o 	 O1: The spectrum is once again shifted
by O2; which is demonstrated more clearly in Fig. 10, where a portion of the power spectral
density is shown in greater detail.
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Fig. 11. Case 5: O1 ¼ 10
ffiffiffiffiffiffiffiffi
p=2

p
and O2 ¼

1
100

ffiffiffiffiffiffiffiffi
5=2

p
; and di ¼ 0:01; ði ¼ 1; 2; 3Þ: (a) x velocities, (b) y velocities, (c) y

position of m1; and (d) the approximate power spectral density of the time history of y1: For comparison, Fig. 4 shows

this data for the undamped version.

N.M. Kinkaid et al. / Journal of Sound and Vibration 287 (2005) 901–917 913
4.5. Case 5: Effects of Viscous Damping

In order to investigate the effects of viscous damping in the system, the natural frequencies are
set to those of Case 2 above (namely O1 ¼ 10

ffiffiffiffiffiffiffiffi
p=2

p
; O2 ¼

1
100

ffiffiffiffiffiffiffiffi
5=2

p
) and a moderate amount of

viscous damping is added (di ¼ 0:01; i ¼ 1; 2; 3). As seen in Fig. 11, this amount of viscous
damping attenuates but does not eliminate the impulse-train-like response. The onset of this type
of response is delayed by the damping due to the attenuation of oscillations of m1 in the
longitudinal direction.
5. A mechanism for brake squeal

Clearly, the behavior of the model presented above shows that under suitable conditions, a
sliding system may be subjected to periodic impulses in the direction perpendicular to the
predominant sliding velocity. However, further examination is necessary to explain how these
impulses manifest.

When the system is set in motion as described at the outset of Section 4, the sliding velocity is
dominated by the action of the system along the longitudinal direction. Initially the small
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oscillations of the system in the lateral direction have a negligible effect on the overall
sliding direction (which corresponds directly to the direction of the friction force when jvrelj40 as
seen in Eq. (1)). From Fig. 4(a), one can infer how the x component of vrel evolves.
As the frictional interaction dissipates energy from the system, oscillations of m1 in the
x direction periodically cause the x component of vrel to become small (or even zero as
the system progresses into stick–slip motion). When this occurs, the y component of
the slip velocity may no longer be negligible, and the direction of the friction force may change
suddenly.

Fig. 12 shows how the direction of the friction force (labeled y and measured in degrees from
the x-axis) corresponds to the x component of the sliding velocity during a short interval. This
figure seems to support the above hypothesis: each peak in y coincides with a valley in the x

component of vrel: While the change in friction force direction seen here is less than 1�; this imparts
enough momentum to m1 in the y direction to cause the behavior discussed in Section 4. Some
important features to be noted in Fig. 12 are that this effect occurs both before and after the onset
of stick–slip motion, that the height of the y peaks tends to grow with the deepening of the valleys
in the x component of vrel (though the height is also dependent upon the y component), and that
the peaks in y tend to slightly lag the valleys in vrel � ex:

One interpretation of the lateral impulse trains witnessed in the previous section allows for the
description of a mechanism for disc brake noise that is in many ways consistent with the known
qualitative aspects of that phenomenon. Foremost, the impulse trains can only occur when the
forward speed of m2 is low, corresponding to a low forward speed of a vehicle. The low-speed
nature of brake squeal is one of its most important aspects, yet the authors know of no proposed
mechanism which addresses it.

Secondly, it has been noted (see Section 2.3 of Ref. [1], for example) that the sound power of
disc brake squeal represents a minuscule fraction of the mechanical power being dissipated in a
braking action. Results in Section 4 show clearly that the action of this mechanism, which is
entirely in the lateral direction, is orders of magnitude less than the action of the main braking
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effect, which takes place in the longitudinal direction. The transfer of power from braking into
other effects here seems to be inherently limited, which is a feature missing from linear stability
based models.

An interesting note is that the system under examination here supports only one motion as time
tends toward infinity. With the damping parameters set to any values greater than zero, the system
eventually comes to rest. Otherwise, a bounded harmonic oscillation results. In either case, the
system is stable, yet squeal may still result during the transient stages if the ratios of the natural
frequencies favor it.

One aspect that our mechanism shares with sprag-slip and the follower force models is the
excitation of brake squeal through the variation of the friction force as the coefficient of kinetic
friction remains constant. In these two models, this effect is achieved through the variation of the
magnitude of the friction force by varying the normal force on which it linearly depends. In our
newly proposed mechanism, it is changes in the direction rather than the magnitude of the friction
force which are supposed to excite squeal. It is not unreasonable to suppose that some
combination of these effects may provide a mechanism which models brake squeal with yet more
fidelity.
6. Closing remarks

Although the motivation for our mechanism is based on studies of a rather simple model for a
brake system, we are pursuing a more realistic finite-element model of an automotive disc brake.
The transient phenomena and multiple length scales involved in this model have made this a
difficult model to simulate.

The mechanism we propose has several features in common with recent works by Pilipchuk and
Tan (see Refs. [15,16]). These authors also present a transient analysis of a braking event and
correlate the resulting creep-slip dynamics to a proposed mechanism for brake squeal.6 The major
differences between the two mechanisms is that ours depends crucially on two-dimensional
contact and does not require a mk which depends on the sliding velocity dependent. Several
authors (see, e.g., Refs. [14–16,25]) have noted the complex spectral response of friction
oscillators. However, to our knowledge, the structure we found for the oscillator in this paper is
unique.

Our proposed mechanism is similar to the Rhee et al.’s hammering theory of brake squeal (see
Ref. [12]). However, their theory is based on a spragging phenomena whereas this is absent in our
mechanism. We also emphasize that the vibration frequencies observed in our simple model do
not necessarily correspond to the natural frequencies of the system. This suggests that it is not
possible to easily predict the squeal frequencies excited by our mechanism. In particular, studying
the natural frequencies of rotors and pads may not lead directly to estimates of the squeal
frequencies excited by our mechanism.
6In Refs. [15,16], a regularization of (one-dimensional) Amontons–Coulomb friction is used. This leads to a

parameter regieme where mk decreases with increasing sliding velocity.
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